

Mobile WiMAX Evolution Toward IMT-Advanced (4G)

Takashi Shono, Ph.D. Technical Policy & Standards Corporate Technology Group, Intel K.K.

September 7, 2007

Intel and the Intel logo are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the United States and other countries. All dates are preliminary, based on current expectations, and subject to change without notice. *Third party marks and brands are the property of their respective owners. Copyright © 2007 Intel Corporation. All rights reserved.

Agenda

- Introduction
- WiMAX Deployment
- 802.16/WiMAX Standards
- PHY/MAC Features
- Mobile WiMAX Performance
- Spectrum & Regulations
- Next-Generation Mobile WiMAX
- Summary

Introduction

Wireless (Wi-Fi) implementation ratio on notebooks [%]

2008: Best Connected Model

Copyright 2007 © Intel Corporation. All rights reserved.

The World Is Going Wireless

INFRASTRUCTURE: Voice and Data Last Mile Wireless Backhaul Wireless Service Convergence

ENTERPRISE:

Unwired Offices and Factories Connected Mobile Devices Ubiquitous Wireless Connectivity

CONSUMER:

Wireless Broadband (WiMAX) Voice / Data / Video Inter-Device communications (UWB) Streaming Video / 3D Gaming

Intel's Vision for Mobile Internet

- Success of broadband wireline services (Cable/DSL) and shortrange portable wireless data services (Wi-Fi) have created a killer application: "Mobile Broadband Internet"
- Consumers are demanding Mobile Internet (Cable/DSL like) anytime/anywhere

• Wi-Fi and WiMAX are the technologies that will bring us the promise of true "Mobile Internet"

Mobile Internet Device

- The gateway to the Internet is the PC (desktops, laptops)
- Primary devices for Mobile Internet will be smaller PCs (not larger handsets)
 - PC-like application processing power (service transparency)
 - Full Microsoft/MAC/Linux OS support (application transparency)
 - Always-on experience
- A whole new class of Mobile Internet Devices (MIDs)
 - Small form factor
 - Good battery life
 - Low cost
- Opportunity for other types of specialized devices (music, phone, video, TV, etc.)

Intel's Commitment to WiMAX

WiMAX Deployment

Copyright 2007 © Intel Corporation. All rights reserved.

12

WiMAX E2E Architecture

802.16/WiMAX Standards

Standardization Bodies

IEEE 802.16 Working Group

 Develops PHY/MAC standards and recommended practices to support the development and deployment of broadband Wireless Metropolitan Area Networks (WMAN)

WiMAX Forum

- Non-profit trade organization formed to promote the 802.16 WMAN standard, and to certify 802.16 equipment as interoperable.
- Board Members consist of Intel (President), Alvarion, Airspan, Aperto, Fujitsu, AT&T, ZTE, BT, Sprint, Samsung, KT, Motorola, KDDI, Alcatel-Lucent, Nokia

WiMAX Forum Organization

Board of Directors (BoD) Project Coordination Committee (PCC) Technical Advisory Committee (TAC) Marketing (MWG) Technical (TWG) Network (NWG)

Application (AWG)

Global Roaming (GRWG)

Copyright 2007 © Intel Corporation. All rights reserved.

Evolutionary (ETWG)

Certification (CWG)

WiMAX Forum Membership 4 Years and Growing

WiMAX Forum Japan Office

- Announcement of WiMAX Forum® Japan Office and Its Officers
 - PORTLAND, OR June 21, 2007 The WiMAX Forum®, an industry-led non-profit organization comprising more than 460 companies committed to promoting and certifying interoperable WiMAX® products, today announced establishment of the WiMAX Forum Japan Office in conjunction with appointment of Japan Director and Vice Directors by the WiMAX Forum.
 - The Japan Director and Vice Directors appointed by the WiMAX Forum are as follows:
 - Japan Director <u>Dr. Tadao Saito</u>, Professor Emeritus at the University of Tokyo
 - Vice Director of Technology <u>Dr. Kenji Kohiyama</u>, Professor at Keio University
 - Vice Director of Operations <u>Dr. Takashi Shono</u>, Executive Researcher of Intel K.K.

802.16 Specifications

	802.16	802.16-2004	802.16e	
Ratified	December 2001	June 2004	December 2005	
Frequency Band	10-66GHz	<11GHz	<6GHz (Licensed band)	
Channel Conditions	LOS Only	NLOS	NLOS	
Peak Data Rate	Up to 135 Mbps at 28MHz channelization	Up to 75 Mbps at 20MHz channelization	Up to 75 Mbps at 20MHz channelization	
Modulation & Other PHY Technologies	QPSK, 16QAM & 64QAM	• OFDM	• OFDMA	
		• BPSK, QPSK, 16QAM & 64QAM	• QPSK, 16QAM & 64QAM	
		• AAS(SDMA), STC & MIMO	• AAS(SDMA), STC & MIMO	
Mobility	Fixed	Fixed & Nomadic	Fixed, Nomadic, Portable (Walking) & Mobile (120 km/h)	
Channel Bandwidth 20, 25 & 28MHz		Selectable channel bandwidths from 1.25 to 20MHz	Selectable channel bandwidths from 1.25 to 20MHz	
Typical Cell Radius	3-5 km	<10 km; Max range 50 km based on tower height, antenna gain and power transmit	2-3 km	

Copyright 2007 © Intel Corporation. All rights reserved.

802.16 Protocol Stack

Mobile Certification Profiles

Band	Class	1	1 2 3 4 5					
Frequency Range [GHz]		2.3-2.4	2.305- 2.320, 2.345- 2.360	2.496- 2.690	3.3-3.4	3.4-3.8	3.4-3.6	3.6-3.8
Duplex		TDD	TDD	TDD	TDD	TDD	TDD	TDD
Channel Bandwid	3.5 MHz		2.A					
	5 MHz	1.B	2.B	3.A	4.A	5.A	5L.A	5H.A
	7 MHz				4.B	5.B	5L.B	5H.B
ith [MH	8.75 MHz	1.A						
[]	10 MHz	1.B	2.C	3.A	4.C	5.C	5L.C	5H.C
opyright 2007 © Intel Corporation. All rights reserved. 21								

Successful 1st Plugfest for Mobility

Global Infrastructure for Certification Testing

• AT4 Wireless (Spain)

• Lead Lab for fixed and mobile – Opened August 2005

•TTA (Korea)

• November 2007

AT4 Wireless (US)

November 2007

CATR (China)

 Lab for fixed – April 2007, lab for mobile – November/December 2007

• ADT (Taiwan)

- Lab for fixed and mobile November 2007
- 2nd Lab July 2008

PHY/MAC Features

OFDMA

- The carrier spectrum is divided into multiple Subchannels composed of multiple tones
- Subchannels are simultaneously used by multiple transmitters
- Concentration of power on selected subchannel tones adds up to 15dB gain per subchannel relative to OFDM

OFDMA TDD Frame Structure

MAC QoS – Data Service Types

QoS Category	Applications	QoS specifications	
UGS	VoIP	Maximum sustained rate	
Un-Solicited		• Maximum latency	
Grant Service		• Jitter tolerance	
rtPS	Stream Audio,	 Minimum reserved rate 	
Real-Time	Video	 Maximum sustained rate 	
Packet Service		Maximum Latency	
ErtPS	Voice with Activity Detection (VoIP)	 Minimum reserved rate 	
Extended Real-		 Maximum sustained rate 	
Service		• Maximum Latency	
nrtPS	FTP	Minimum reserved rate	
Non-Real-Time		Maximum sustained rate	
Packet Service		• Traffic priority	
BE	Data	 Maximum sustained traffic rate 	
Best-Effort		• Traffic priority	
Service			

ínte

Connection Oriented MAC

- Define QoS parameters for each service flow
- Associate QoS service flows with logical connections
- Direct packets into service flow
- Determine transmission ordering and scheduling for the air interface
- Dynamically establish new QoS-enabled service flows as required

Network Architecture Functional Requirements

- Stationary and Fully Mobile
- Standalone and Interworking deployments
 - Multiple operator tiers
- Operator domain agnostic mobile client interfaces
- Multi-vendor network infrastructure interoperability
 - Accommodate vendor differentiation
 - Flexible deployment topologies
- Breaking up of access, connectivity and application service providers

Generic Mobile WiMAX Architectural Model

Supports Multiple Virtual Network Operator concept

Copyright 2007 © Intel Corporation. All rights reserved.

Network Reference Model (NRM)

Copyright 2007 © Intel Corporation. All rights reserved.

Mobile WiMAX Performance

Throughput Comparison to 3.5G

*Source document: WiMAX Forum White Paper – Mobile WiMAX Part II

WiMAX throughput is 3X better than 3.5G cellular

Spectral Efficiency Comparison to 3.5G

*Source document: WiMAX Forum White Paper – Mobile WiMAX Part II

WiMAX spectral efficiency is 3X better than any 3.5G cellular

Spectrum & Regulations

Spectrum by Region '06-'08 Initial Deployments

Target Spectrum and Policy Principles

Technology Neutrality

- Flexibility in regulations to encourage competition, technology innovation, and economies of scale

IMT-Advanced VAN Diagram

WiMAX within IMT-2000 (IP-OFDMA)

Japan MIC 2.5 GHz BWA Committee

- MIC established the 2.5 GHz BWA Committee under the Information and Communications Council in February 2006 to define technical requirements for 2.5 GHz BWA systems
- The Information and Communications Council approved in December 2006 the report for mobile usage prepared by the 2.5 GHz BWA Committee, and MIC is now preparing relevant regulations and a licensing policy
- There are four TDD systems described in the committee report:
 - Mobile WiMAX, 802.20 (MBTDD-Wideband, MBTDD-625k MC), and Next-Generation PHS

2.5 GHz Licensing Policy

- 2 types of licenses: 30 MHz each for 2 nationwide mobile operators and 10 MHz each for regional fixed operators
- Nationwide mobile operators have to deploy the network covering 10% of the population within 3 years and 50% of the population within 5 years from the date when the license is awarded, respectively
- The existing 3G operators cannot apply for the nationwide license by themselves: to limit 3G operator's ownership to 33%
- The plan for leasing the network to MVNO needs to be provided

2.5 GHz Spectrum Allocation Plan

Envisioned Timeline for 2.5 GHz Operation

- May 15: MIC to issue the draft license policy (DONE)
- From May 15th through June 15: Public consultation process (DONE)
- July 11: MIC to issue an official license policy (DONE)
- September 10 through October 12: MIC to "call for operators"
- Q4 (probably until end of November): MIC to hold a beauty contest
- Q4 (probably in December): MIC to award spectrum to operators
- Q4 2008: Licensed operators to launch services

Next-Generation Mobile WiMAX

Summary

Key Messages

- Mobile WiMAX = "Mobile Internet"
- Industry momentum continues to rapidly grow
- Global open standard developed by 100's of companies over many years in IEEE
- No single company has a disproportionate amount of intellectual property rights
- Wireless technologies are evolving to OFDMA, an ideal foundation for delivering 4G services
- Significant to adopt and promote a "Technology Neutral" approach to spectrum management
- "WiMAX within IMT-2000" will definitely benefit the mobile industry and end users

inter Leap ahead[™]